Trace element-incorporating octacalcium phosphate porous beads via polypeptide-assisted nanocrystal self-assembly for potential applications in osteogenesis.
نویسندگان
چکیده
The promising future of calcium phosphates (CaP) as a group of biomedical materials with a wide range of functions, might ultimately depend on tuning their composition and microstructure. However, the disorderly growth and aggregation of CaP nanocrystals limit their practical application. This paper reports a strategy for designing polypeptide/trace elements (TE), dual mediating the self-assembly of octacalcium phosphate (OCP) nanocrystals, with multilayered porous cross section and TE dilute doping. Intriguing advantages such as bead morphology, mesoporous structure, tunable diameter (20-1,000 μm) and TE contents, biodegradability and bioactivity are obtained. The microcomputerized-tomography reconstruction reveals an interconnective macroporous architecture and a void volume of over 49.02% for the nearly close-packed bead scaffolds. The specific surface area and average mesopore size are 89.73 m(2)g(-1) and 2.75 nm for the 180 μm diameter bead group, and those of 500 μm diameter beads are 130.17 m(2)g(-1) and 3.69 nm, respectively. It is demonstrated that the bead production mechanism is a multistep process including liquid-like precursor formation, nanocrystal nucleation and aggregation, aggregate combination and bead growth. Such a multilayer structure of TE-OCP porous beads would have adequate physical strength to maintain their shape, in contrast to the physical weakness of pure OCP hollow shell. The beads exhibit good biocompatibility and degradability and encourage bone mineralization in the early stage in vivo. This study demonstrates the feasibility of developing highly porous calcium phosphate giant beads via biomimetic self-assembly for direct application in reconstructive surgery and other widespread applications such as tissue engineering and drug delivery.
منابع مشابه
Preparation and In Vitro Biological Evaluation of Octacalcium Phosphate/Bioactive Glass-Chitosan/ Alginate Composite Membranes Potential for Bone Guided Regeneration.
The chitosan/alginate-trace element-codoped octacalcium phosphate/nano-sized bioactive glass (CS/ALG-teOCP/nBG) composite membranes were prepared by a layer-by-layer coating method for the functional requirement of guided bone regeneration (GBR). The morphology, mechanical properties and moisture content of the membranes was studied by scanning electron microscopy (SEM) observation, mechanical ...
متن کاملRaman spectroscopic evidence for octacalcium phosphate and other transient mineral species deposited during intramembranous mineralization.
UNLABELLED To understand early mineralization events, we studied living murine calvarial tissue by Raman spectroscopy using fibroblast growth factor 2 (FGF2)-soaked porous beads. We detected increased levels of a transient phase resembling octacalcium phosphate in sutures undergoing premature suture closure. INTRODUCTION Several calcium phosphates have been postulated as the earliest inorgani...
متن کاملImplantation of Octacalcium Phosphate Stimulates both Chondrogenesis and Osteogenesis in the Tibia, but Only Osteogenesis in the Rat Mandible
Statement of problem: It is not known whether endochondral and intramembranous bones have distinct biological characteristics. Octacalcium Phosphate (OCP), a hydroxyapatite precursor, has been reported to stimulate bone formation after being implanted in parietal bone defects of rats. Purpose: The present study was designed to investigate the response of endochondral and intramembranous bones t...
متن کاملInvestigation of HF/H2O2 Concentration Effect on Structural and Antireflection Properties of Porous Silicon Prepared by Metal-Assisted Chemical Etching Process for Photovoltaic Applications
Porous silicon was successfully prepared using metal-assisted chemical etching method. The Effect of HF/H2O2 concentration in etching solution as an affecting parameter on the prepared porosity type and size was investigated. Field emission electron microscopy (FE-SEM) confirmed that all etched samples had porous structure and the sample which was immersed into HF/H2O2 withmolar ratio of 7/3.53...
متن کامل3D Printing of Octacalcium Phosphate Bone Substitutes
Biocompatible calcium phosphate ceramic grafts are able of supporting new bone formation in appropriate environment. The major limitation of these materials usage for medical implants is the absence of accessible methods for their patient-specific fabrication. 3D printing methodology is an excellent approach to overcome the limitation supporting effective and fast fabrication of individual comp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Acta biomaterialia
دوره 8 4 شماره
صفحات -
تاریخ انتشار 2012